	BUFFER ISSUE RESOLUTION DOCUMENT (BIRD)

BIRD ID#:
ISSUE TITLE: IBIS-AMI Extension for Mid-channel Redriver
REQUESTER: Mahbubul Bari, Ron Olisar, and Hassan Rafat, Maxim Integrated
 Fangyi Rao and Colin Warwick, Agilent Technologies, Inc.

DATE SUBMITTED:

ANALYSIS PATH/DATA THAT LED TO SPECIFICATION:
[bookmark: _GoBack]
Redriver is one type of device that is placed in the middle of the channel to compensate channel loss. It equalizes the upstream channel signal and retransmits it to the downstream channel. The output signal is continuously driven by the input signal and no retiming is performed when the redriver retransmits the signal. Since the redriver can be nonlinear and noisy, its presence breaks the linear channel assumption in AMI simulation today. The proposed revision allows the accommodation of redrivers.

No new keywords are added. A redriver is modeled by two back-to-back input-output IBIS-AMI models as shown below.

 |---|
 | Redriver model |
 | |
 | * * * * |
 | * * *************** *************** * * |
 | * * * * * * * * |
 | * input * * input * * output * * output * |
-->|---* analog *-->* algorithmic *-->* algorithmic *-->* analog *---|-->
 | * model * * model * * model * * model * |
 | * * * * * * * * |
 | * * *************** *************** * * |
 | * * * * |
 | |
 |<------ input ibis model ------->| |<------ output ibis model ------>|

The analog part of the input model represents the input termination at the device input. The analog part of the output model represents the output impedance at the device output. The two algorithmic models represent equalizations and pre-emphasis inside the device. Both models can optionally implement the AMI_GetWave function. The order of signal flow in a redriver model is from input analog to input algorithmic to output algorithmic to output analog. It should be pointed out that the output analog model is driven continuously by the analog waveform returned by the output algorithmic model instead of digital trigger events as in a regular IBIS output model. Therefore, the output analog model is expected to describe an analog circuit as oppose to the conventional digital-to-analog converter. Looking from the input analog portion, the input algorithmic block is assumed to have infinite input impedance. Looking from the output analog portion, the output algorithmic block is assumed to have an output of an ideal voltage source. A redriver model is specified in a single .ibs file that includes both input and output models. An example of redriver .ibs file is

[IBIS Ver] 5.2
[File Name] Redriver.ibs
[Component] Redriver
…
[Pin] signal_name model_name R_pin L_pin C_pin
1p redriver_input_1p redriver_input
1n redriver_input_1n redriver_input
2p redriver_output_2p redriver_output
2n redriver_output_2n redriver_output

[Diff_Pin] inv_pin vdiff tdelay_typ tdelay_min tdelay_max
1p 1n NA NA NA NA
2p 2n NA NA NA NA

[Model] redriver_input
Model_type Input
…
[Algorithmic Model]
Executable Windows_VisualStudio10.0.30319_32 redriver_input_32.dll redriver_input.ami
Executable Windows_VisualStudio10.0.30319_64 redriver_input_64.dll redriver_input.ami
Executable Linux_gcc4.6.1_32 redriver_input_32.so redriver_input.ami
Executable Linux_gcc4.6.1_64 redriver_input_64.so redriver_input.ami
[End Algorithmic Model]

[Model] redriver_output
Model_type Output
…
[Algorithmic Model]
Executable Windows_VisualStudio10.0.30319_32 redriver_output_32.dll redriver_output.ami
Executable Windows_VisualStudio10.0.30319_64 redriver_output_64.dll redriver_output.ami
Executable Linux_gcc4.6.1_32 redriver_output_32.so redriver_output.ami
Executable Linux_gcc4.6.1_64 redriver_output_64.so redriver_output.ami
[End Algorithmic Model]

[End]

In AMI simulations both redriver analog models are treated as if they are linear and time-invariant. The upstream channel, including the redriver input analog model, is represented by an impulse response, hAC1. It is the input impulse to the redriver input algorithmic model’s AMI_Init function. The downstream channel, including the redriver output analog model, is represented by another impulse response, hAC2. It is the input impulse to the redriver output algorithmic model’s AMI_Init function. During time-domain simulations, the output signal from the upstream SerDes Tx algorithmic model is convolved with hAC1. The resulting waveform is the input waveform to the redriver input algorithmic model, whose output is the input waveform of the redriver output algorithmic model. Its output signal is convolved with hAC2 and the resulting waveform is the input waveform to the downstream SerDes Rx algorithmic model. Redrivers can be cascaded in a channel.

Since the redriver output signal is driven continuously by the input signal, clock times are ignored if they are returned by a redriver model. For the same reason, jitter parameters specified in redriver .ami files are also ignored. Device noise is expected to be modeled in AMI_GetWave functions.

